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Abstract

Numerical simulation is used to explore the influence of particle shape and overall porosity on the liquid phase conductivity,σeff , inside
porous networks, such as electrodes or separators used for lithium-ion batteries. Such battery components are often modelled by a power
law, σeff = εασ0, which relates electrolyte bulk conductivityσ0 and void volume fractionε via a Bruggeman exponentα. Frequently, a
value of 1.5 is assumed forα. In this work, theoretical and experimental evidence is presented to show that a Bruggeman exponent of 1.5
is often not valid for real electrodes or separator materials. It is found that only idealized morphologies, based on spherical or slightly
prolate (i.e. rod-type) ellipsoids, are expected to give rise to a Bruggeman law with an exponent of about 1.3. Porous networks based
on other particle morphologies such as oblate (i.e. disk-type) ellipsoids or lamellar or flaky materials increase the tortuous path for ionic
conductivity and result either in a significant increase of the exponentα, or in a complete deviation from the power law. These models
imply that spherical or slightly prolate ellipsoidal particles should be preferred for batteries where high-rate performance is required and
that future separators could be designed with higher ionic conductivity.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computers are becoming more and more powerful and
more advanced software is constantly being developed. This
makes it easier to simulate and thus understand and predict
the performance of practical devices such as batteries, fuel
cells or double-layer capacitors, by using models based on
first principles. In this study, the focus is on general morpho-
logical characteristics of electrodes and separators used in
lithium-ion batteries. The most significant early theoretical
work on modelling battery systems, based on porous elec-
trodes, was developed by Newman and Tobias in the 1960s
and 1970s[1–3]. In more recent times, significant amount of
modelling work on lithium-ion batteries has been presented
[4–6]. A review of these publications show, however, that
many parameters are not known experimentally. One major
challenge is how to implement the morphology of real elec-
trodes and separators. Usually, a quasi-continuous medium
is employed, which simplifies the morphology of battery
components towards a model described by a few parame-
ters. Such parameters are normally only estimated. There-
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fore, numerical simulation of battery performance often re-
quires model fitting and parameter adjustment.

One of the most important properties that limits the per-
formance of lithium-ion batteries at high rates is the trans-
port of lithium ions in the electrolyte. The overall transport
of ionic charges across the cell occurs almost exclusively in
the liquid electrolyte. Transport of lithium ions in the solid
phase takes place mainly within single particles, where dif-
fusion lengths are much shorter than the thickness of the
whole electrode. Thus, open liquid porosity is required to
achieve sufficient performance, particularly at higher rates
of discharge. The relatively poor ionic conductivity of elec-
trolyte solutions based on organic solvents limits the thick-
ness of electrodes when reasonable discharge rates have to
be obtained. Practically, the thickness of electrode layers
in lithium-ion batteries is limited to a maximum of about
0.15–0.2 mm, because complex electrolyte transport phe-
nomena, such as field-assisted migration and coupled dif-
fusion of positive and negative ions, cause electrolyte de-
pletion and accumulation at the higher rates, which further
decreases the electrolyte conductivity. Design of practical
battery electrodes is always a compromise between mini-
mum electrode thickness for maximum specific power and
maximum thickness for higher specific energy and lower
cost. Because of the importance of electrode and separator
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morphology for battery design, this study examines the ionic
conductivity in the liquid phase inside porous structures.

Practical battery electrodes normally consist of a compos-
ite of active-material powder, polymeric binder, and elec-
tronically conductive additives such as carbon. Each of the
components may have its distinctive distribution of parti-
cle sizes and shapes. Thus, a porous network of intercon-
nected pores is formed, and the pores are then filled with
liquid electrolyte. This structure is very complex. A com-
plete description would require an intricate model with a
large number of parameters. Simulations are only practi-
cally possible if the structure is represented by a simplified
quasi-continuum involving a few parameters. In such an ap-
proach, the ‘effective’ electrolytic conductivity,σeff , is often
defined by[2,7]

σeff = εασ0, α ∼= 1.5 (1)

whereσ0 is the bulk ionic conductivity of the electrolyte,ε

is the void volume fraction of the porous electrode or sep-
arator filled with electrolyte,α is the Bruggeman exponent.
The validity of this relation has been shown[7] for the elec-
trolytic conductivity in a variety of porous beds of spherical
particle, and was even approximated for samples of sand-
stone with void volume fractions down to 0.1 when the ex-
ponentα is adjusted to 1.6–1.7. Note that, a porosity of 10%
is well below the closet-packing (ε = 0.26 for hexagonally,
closest-packed spheres) and results from partial sintering or
cementation. De La Rue and Tobias[8] performed careful
experiments with glass beads of various sizes, suspended in
saturated ZnBr2 solutions, for relatively high void volume
fractions of 1–0.6. It was found that suspensions based on
monodisperse spherical particles were described rather well
by a power law withα in the range 1.4–1.5. A similar rela-
tionship was observed even for beads with a size distribution
between 50 and 6400�m in diameter[8].

Nevertheless, the general applicability ofα ∼= 1.5, ap-
pears questionable because particles used for battery elec-
trodes are frequently not of an ideal shape. Graphite or metal
oxide particles may in fact be flaky or irregularly-shaped
ellipsoidal particles. Electrodes are usually compacted by a
calendering step, where an alignment of particles may oc-
cur and result in film anisotropy. Electrodes in commercial
cells may be calendered to porosity values below 0.26, i.e.
beyond the limit of cubic or hexagonally closest-packed,
uniform spheres, since polymeric binder and carbon can be
squeezed into voids and because particles which consist of
a distribution of sizes can pack tighter. In the work reported
here, an investigation is made of the filling of interstices
with smaller particles, which to our knowledge has not been
explored theoretically before. While some authors assumed
the validity of Eq. (1) with α = 1.5 for simulating bat-
tery electrodes[4,9,10] or separators, Fan and White[11]
chose anα-value of 2.5 for both electrodes and separators in
Ni–Cd batteries. Doyle et al.[5] determinedα-values of 3.3,
i.e. significantly higher than 1.5, by fitting experimental dis-
charge curves of LiMn2O4-based lithium-ion batteries. The

same authors used an even higher Bruggeman exponent of
4.5 for quantifying the ionic conductivity of their plasticized
electrolyte membrane[5]. Experimental data for separators,
some from literature[12] and some from this work (v.i.),
are only compatible withEq. (1) if the formal Bruggeman
exponent is adjusted to values significantly higher than 1.5.

Due to the lack of generally-accepted procedures to quan-
tify electrolytic conductivity in practical porous battery elec-
trodes, it is of interest to examine the validity ofEq. (1)for
different morphologies by using computer simulations. This
paper is organized in the following way. After an outline
of the theoretical background, the experimental conductivity
data for a variety of separator materials are presented and
assessed in terms ofEq. (1). Numerical simulation results
for electrodes based on spherical particles of uniform size
are then discussed and the results compared withEq. (1).
Conductivity for configurations beyond the level of closest
packing of uniform spheres is explored by placing smaller
spherical particles into interstices between the larger ones.
Then, consideration is given to configurations which are
based on closely-packed spheres modified by introducing an
anisotropy parameter which results in a formal deformation
of spheres to aligned ellipsoids, while maintaining the over-
all porosity at a constant value. Finally, electrodes based on
aligned, rather flat particles are explored by approximating
them by a network of tiles. For each of the model cases,
the dependency of conductivity on volume void fraction
and film morphology are investigated in order to determine
whether (1) can be applied. Conclusions are drawn on the
relevance of this work to the design of battery electrodes and
separators.

2. Theoretical

2.1. Bruggeman exponent and MacMullin number

The porosityε of separators and electrodes can be mea-
sured directly (for example, by mercury porosimetry or pyc-
nometry). The so-called MacMullin numberNM relatesσeff ,
the effective electrolytic conductivity of a porous network,
andσ0, the ionic conductivity of the bulk electrolyte accord-
ing to:

NM = σ0

σeff
(2)

ComparingEqs. (1) and (2)yields:

NM = ε−α (3)

There is evidence that the power law,Eq. (1), with α = 1.5 is
not valid for real battery separators[12] (v.i.) and electrodes
[5]. In principle, it would be more correct to avoidEq. (1)
and instead measure the MacMullin number and employ
Eq. (2) for simulation of battery performance. This can be
done in a straightforward way for separator membranes (see
Section 3below), but is more tedious for electrode films.
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Fig. 1. Model geometries for calculating electrolytic conductivity of voids formed between monodisperse spheres in a fcc lattice. Representationsin top
line show ‘conductivity unit cells’ (dashed lines) used for calculating conductivity in the directions [0 0 1], [1 1 0] and [1 1 1], with respect to the fcc unit
cell. Representations in bottom line detail conductivity unit cells with arrows that indicate the direction of current flow.

Abraham[12] suggested another relationship between the
MacMullin number and porosity by introducing a tortuosity
parameter,T, i.e.

NM = T 2

ε
(4)

By combiningEqs. (3) and (4), it is easy to transformT
values[12] to formal Bruggeman exponents according to:

α = 1 − 2 log(T)

log(ε)
(5)

2.2. Simulation of MacMullin numbers

If all relaxation and polarization effects can be neglected,
the electrolyte conductivity,σ0, is governed by Ohm’s law:

�j = σ0 �E (6)

wherej is the current density andE is the electrical field. If
the conductivity is normalized toσ0 = 1, the electrical field
is defined as the gradient of the electrical potential,ϕ, by

�E = − ∂

∂�r ϕ (7)

Local charge neutrality requires

∂

∂�r
�j = 0 (8)

Assuming a constant conductivity in the electrolyte and in-
sertingEq. (6) into Eq. (8)yields the Laplace equation:

−∇2ϕ = 0 (9)

This equation is solved in the conductive volume with suit-
able boundary conditions forϕ, and the normal derivative

∂nϕ. ‘Conductivity unit cells’ were defined by reducing the
electrode morphology to the smallest possible cubic or rect-
angular prismatic unit, which is filled with the conductive
medium (electrolyte) and excludes non-conductive regions
which represent the particles. By way of example,Fig. 1
(left) shows how the electrolytic conduction in the [0 0 1] di-
rection in a medium based on spherical particles stacked in
a face-centred cubic (fcc) lattice was simulated in the void
space of 1/8 of a fcc unit cell. The corresponding volume
has a base (z = 0) and a top (z = 1/2). Boundary conditions
are a fixed potentialϕ1 at the base and a fixed potentialϕ2
at the top; and the normal derivatives of the potential are
zero at the four planes parallel to the current direction. ‘Con-
ductivity unit cells’ used for conductivity simulation in the
[0 0 1], [1 1 0] and [1 1 1] directions in a face-centred cubic
lattice are shown inFig. 1. For the [0 0 1] and [1 1 0] unit
cells, the planes parallel to the current direction are mirror
planes. Thus, there is no net current flow in or out of these
planes and the boundary condition∂nϕ = 0 is fulfilled. For
the [1 1 1]-direction, the lightly shaded top plane inFig. 1
and the corresponding bottom plane are not mirror planes.
Nevertheless, the boundary condition was approximated by
∂nϕ = 0 at these two planes (see results and further discus-
sion below).

The effective conductivity,σeff , and thus the correspond-
ing MacMullin number, can be calculated from the current
divided by the potential differenceϕ2 −ϕ1 between top and
base. The current is obtained by integrating∂nϕ over the
base surface or top surface; the indexn indicates the current
direction normal to the base or top surface. Alternatively,
the current can be obtained by integrating∂nϕ over the vol-
ume and dividing by the distance between top and base. A
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gradual increase of the radius of the spheres delivers the ef-
fective conductivities and MacMullin numbers as a function
of porosity.

The calculations were made using the program package
FEMLAB, running in conjunction with MATLAB on a stan-
dard PC. FEMLAB is a program package for solving partial
differential equations. The Laplace equation (Eq. (9)) was
solved using a mesh with about 20,000 nodes and elements.
The mesh was automatically adapted to suit the given geom-
etry. The accuracy was checked by using mesh refinement.
Standard FEMLAB routines were used to perform the sur-
face integration for∂nϕ and the volume integration for∂zϕ.
In the vicinity of closest packing, i.e. when the conductive
channels became very narrow, numerical convergence prob-
lems occurred. Those results were discarded.

3. Experimental

A number of microporous polyolefinic separator mem-
branes were saturated with an electrolyte solution of 1 M
LiPF6 in a 1:1 (wt:wt) mixture of ethylene carbonate and
diethyl carbonate, and their conductivity was measured by
two-point ac impedance. For each separator material, a cir-
cular piece of electrolyte-saturated membrane of 16 mm di-
ameter was placed inside a 2032 button cell between two
stainless-steel discs of 16-mm diameter and 1-mm thickness.
A spring load was placed between one of the stainless-steel
disks and the cell can. Cell cans, lids, grommets and spring
loads were obtained from Hohsen Corporation. Cells were
assembled in an argon-filled glovebox. The porosity and
thickness of the separator samples are based on values pro-
vided by the manufacturers. The resistance of each sam-
ple was determined from the resistive part of the complex
impedance at 60 kHz. The results were corrected for the
combined electrical contact resistance of lid-to-steel disc,
steel disc-to-spring load, and spring load-to-cell can. This
overall contact resistance was determined to be 0.35�. From
the corrected resistance and thickness of each separator sam-
ple, the effective conductivity was obtained. The conductiv-
ity of the bulk electrolyte was measured by ac impedance at
the same ambient temperature, using a standard conductivity
cell, and the MacMullin number was obtained fromEq. (2).
No correction was made for possible partial compression of
separator membranes inside a real battery.

4. Results and discussion

4.1. Conductivity measurements with various separators

The porosity values as given by the manufacturers, mea-
sured MacMullin numbers and formal Bruggeman expo-
nents derived usingEq. (3)are listed inTable 1for a variety
of commercially available separator materials. With the ex-
ception of one product with a very high porosity of 85%,

Table 1
Porosity values,ε, provided by manufacturer, MacMullin number,NM,
obtained from conductivity measurements and Bruggeman exponents,α,
derived usingEq. (3) for various commercial microporous separators

Separator sample ε NM α

Celgard 2400 0.37 15.7 2.8
Celgard 2500 0.55 8.5 3.6
Solupor 14P01A 0.45 22.1 4.0
Solupor 7P03A 0.85 4.3 10.4
Hipore N962C 0.45 16.1 3.7
Hipore N720 0.37 19.3 3.1
Hipore 6022 0.50 13.4 3.9
Teklon ‘Li-ion’, 25 �m 0.45 12.9 3.4

most membranes yield formal Bruggeman exponents of 3–4.
The Bruggeman exponents of all tested separator materials
are significantly higher than 1.5. The results from this work
are qualitatively in agreement with tortuosity data reported
by Abraham[12] for 21 separator samples. Formal Brugge-
man exponents can be calculated from Abraham’s data using
Eq. (5). Apart from oneα-value of 0.4, they vary between
1.5 and 6.6, with the majority being between 2.3 and 4.4.
Note that, a value below 1 is physically impossible. The-
oretically, a Bruggeman exponent of 1 could be obtained
if a separator consists of a material with straight, parallel
channels, which are all perpendicular to the separator sur-
face. The porosity values for the same product designation
may vary to a certain degree. As an example, Celgard 2400
is specified by a ‘typical’ porosity value of 37%, while the
manufacturer’s product documentation lists values varying
between at least 35 and 41%. For the same product, Abra-
ham[12] used a porosity of 32%. An uncertainty in porosity
between 35 and 41% for this product results in a range of
Bruggeman exponents of between 2.63 and 3.09.

Because of the very different processes used for separator
and electrode manufacture, separators generally have a very
different morphology from composite electrodes based on
inorganic materials. Practically, the porosity of microporous
membrane separators is often created by stretching the mem-
brane and thus creating an array of pores of particular shape
and size that depends on the process conditions. A separator
has to fulfill a variety of functions, namely; to insulate an-
ode and cathode from each other, provide a maximum of ion
transport, and assure sufficient wettability. In addition, often
a shut-down function is desired for product safety. Contrary
to lithium-ion batteries in which a low tortuosity is desired,
in lithium metal-based batteries a tortuous path in combina-
tion with a uniform current distribution over the whole elec-
trode/separator interface, is sought in order to minimize den-
drite growth, which may propagate from points of increased
current density. Because of all these requirements, it is not
straightforward to state from first principles what separator
morphology is ‘best’. Purely for maximizing high-rate per-
formance, the overall separator/electrolyte resistance has to
be minimized. With a given electrolyte system, this can be
achieved by minimizing separator thickness andNM. Thus,
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separators with a high porosity, a low Bruggeman exponent
and minimum thickness are desirable solely from the power
performance point of view.

Since it is experimentally easy to determine the main
parameter which governs the behaviour of the electrolytic
quasi-continuum of the porous network inside a separator,
i.e. the MacMullin number, there is not an immediate incen-
tive to model separator structures. In principle, a similar ap-
proach to that used for characterizing the electrolytic trans-
port properties by ac impedance could be applied to battery
electrodes. The results would be of significant practical inter-
est. The experiment is, however, not as straightforward as for
separator materials since it is difficult to obtain free-standing
films of electrodes (without substrate), which have the same
composition and morphology as industrial electrodes. Ad-
ditionally, the measurement of the ionic conductivity of the
films would require the use of at least one additional sep-
arator layer to suppress the electronic conduction between
the blocking electrodes (e.g. stainless-steel) and the porous
electrode to be characterized. The main scope of the present
study is to explore theoretically a broad range of configu-
rations that model idealized morphologies of battery elec-
trodes, rather than to develop an experimental technique or
to characterize specific electrodes.

4.2. Simulation of various electrode morphologies

4.2.1. Spherical particles
First, it was investigated whether numerical simulation

reproduces the experimentally observed power law with a
Bruggeman exponentα ∼= 1.5 [7,8] for conductive liquids
inside a bed of uniform spherical particles. The effective
conductivity is shown inFig. 2 as a function of the volume
fraction filled with the conductive liquid. The volume frac-
tion was varied by gradually increasing the radius of the
spheres on their respective lattice positions. The data were

Fig. 2. Relative electrolytic conductivity of voids formed between
monodisperse spheres in different directions in a fcc or a bcc lattice.

calculated by a series of simulations using the ‘conductiv-
ity unit cell’ shown in Fig. 1. The particle arrangement is
based on face- or body-centred cubic unit cells (fcc or bcc).
The simulations were made for different configurations and
different current directions. Since the four side walls of the
‘conductivity unit cells’, i.e. those parallel to the current di-
rection, are mirror planes for the [0 0 1] and the [1 1 0] direc-
tion, the use of the smallest unit cell is justified. As pointed
out above, this is not the case for the ‘conductivity unit cell’
for the [1 1 1] direction, where the top plane (shaded lightly
in Fig. 1) and the corresponding bottom plane are not mirror
planes. Calculations were performed with 1 [1 1 1] ‘conduc-
tivity unit cell’ and with 5 such cells stacked on top of each
other, i.e. stacked in the direction [1̄ 1̄ 2], which is perpen-
dicular to the plane shaded lightly. With the larger number
of cells, the error from incorrect boundary conditions can be
reduced.

As seen inFig. 2, the effective conductivity as a function
of volume fraction from 100% void volume down to closest
packing does not depend significantly on either the nature of
the lattice (fcc or bcc) or the direction of the current chosen,
at least for the investigated directions of [0 0 1], [1 1 0] and
[1 1 1] for fcc. A smooth dependence ofσeff on porosity is
obtained in this region. For a fcc lattice, a 28% void volume
fraction is near to the situation of closest-packed spheres
(ε = 0.26). For a bcc lattice, closest packing corresponds
to a 32% void volume fraction. A power law is valid and a
fit for the Bruggeman exponentα shows that the following
relation holds:

σeff = εασ0 orNM = ε−α, α ∼= 1.3 (10)

The Bruggeman exponents for the various geometries which
were simulated in this work are summarized inTable 2. This
analysis shows that the electrolytic conductivity is almost the
same for 1 [1 1 1] ‘conductivity unit cell’ and for 5 stacked
cells, which indicates that forcing the current lines parallel
to the plane shaded lightly inFig. 1 (due to the boundary
conditions outlined above inSection 2.2) does not have a
significant impact on the overall conductivity.

Smaller volume fractions were simulated by letting the
spheres overlap, thus simulating a sintering process. The
data inFig. 3 show that below the level of closest packing,
conductivity no longer follows the same exponential law,
i.e. the dashed curve is not a straight line in the double

Table 2
Bruggeman exponents for electrolytic conductivity of voids formed be-
tween monodisperse spheres in different directions in a fcc or a bcc lattice

Lattice-[direction] Bruggeman exponent

fcc-[0 0 1] 1.32
fcc-[1 1 0] 1.32
fcc-[1 1 1], 1 conductivity unit cella 1.35
fcc-[1 1 1], 5 conductivity unit cellsa 1.33
bcc-[0 0 1] 1.31

a See text.



K.K. Patel et al. / Journal of Power Sources 122 (2003) 144–152 149

Fig. 3. Relative electrolytic conductivity of voids formed between
monodisperse spheres in [1 1 0] direction of a fcc lattice, along with a
fit according toEq. (3). In addition, either octahedral or tetrahedral sites
are filled with increasingly larger spheres (see text), thus further reducing
void volume fraction.

logarithmic plot. Electrodes for commercial Li-ion batteries
are generally not sintered. They normally consist, however,
of a variety of particle sizes, which allows lower porosity
values than found with monodisperse particles. This case
was modelled by adding smaller spherical particles to an
arrangement of spheres with a radius of 0.35 on the fcc sites.
The radiusr = 0.35 is a value just below

√
2/4 for closest

packing. Octahedral sites (at each of the four free corners
of the ‘conductivity unit cell’ inFig. 1) or tetrahedral sites
(in the centre of the ‘conductivity unit cell’) were filled. The
radii of the smaller spheres were varied between 0 and<0.15
for the octahedral sites and from 0 to<0.08 for tetrahedral
ones, i.e. just to a size where the smaller spheres almost
contacted the larger ones. The insert ofFig. 3 shows that

Fig. 4. Scanning electron micrographs of cross-sections of battery electrodes: (A) anode based on natural graphite; (B) cathode based on transitionmetal
oxide material.

the conductivity slightly deviates fromEq. (10) for lower
fractions of conductive volume, which is achieved by filling
octahedral or tetrahedral sites.

In summary, simulations have reproduced the experimen-
tal result that a power law (Eq. (10)) is valid from 100%
down to void volume fraction that correspond to closest
packing. The exponent is slightly smaller than that exper-
imentally determined for porous beds[7,8]. This may be
due to the idealized packing arrangement in highly symmet-
ric lattices, which does not fully reflect the situation in real
packed or fluidized beds.

4.2.2. Ellipsoidal particles
Battery electrodes are normally very different from

packed uniform spheres. Scanning electron micrographs
of electrodes prepared on commercial coating equipment
are shown inFig. 4. The cross-section of an anode made
from natural graphite (Fig. 4(A)) clearly shows that sheets
or flakes of active material are partially aligned, leading to
an anisotropic morphology. Obviously, the liquid diffusion
paths across the electrode are quite long and the tortuosity
for conduction across the pores of the electrode is large.
A cross-section of a cathode which comprises transition
metal oxide particles is shown inFig. 4(B). Although the
anisotropy is less pronounced, it is obvious that the particles
are non-spherical and quite non-uniform.

Numerical computer simulations of configurations were
undertaken when a change was made from an isotropic mor-
phology to an anisotropic one, while maintaining porosity
constant. Starting from the fcc configuration shown inFig. 1,
the unit cell and the spheres were elastically deformed by
formally ‘compressing’ in thez-direction (=current direc-
tion). Thus, the spheres become oblate (disk-type) ellipsoids,
aligned parallel to the electrode surface, and the cubic unit
cell becomes a rectangular prism. In this case, the anisotropy
parameter,R, is the ratio of the lengths of one of the two
longer edges of the unit cell to the short edge (inz-direction),
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Fig. 5. Relative electrolytic conductivity of voids formed between
monodisperse spheres (R = 1) or oblate ellipsoids in a fcc lattice as
a function of porosity for an anisotropy parameter betweenR = 1 and
R = 10.

as well as the ratio of the long (x, y) to the short (z-direction)
ellipsoid axes. Void volume fraction was varied by adjust-
ing the volume of the ellipsoidal particles on their respective
lattice positions, while maintaining their aspect ratio. The
electrolytic conductivity is shown inFig. 5 as a function of
void volume fraction in a double logarithmic plot for vari-
ous anisotropy parameters. With increasing anisotropy, the
deviation from the strict power law (Eq. (3)) becomes more
and more obvious. For practically important porosity values
of 30–50%, however, still reasonably straight lines are ob-
tained, as shown inFig. 5. The slope and thus the formal
Bruggemann exponents, calculated from data represented in
Fig. 5by applyingEq. (3)for each data point, increase with
increasing anisotropy. The closed symbols inFig. 6 are for
oblate ellipsoids, the data showα-values of 1.3–2 for low
anisotropy ofR < 2. The Bruggeman exponent, however,
increases quite rapidly with higher anisotropy, and results
in significantly lowered conductivity values, especially for
practically important porosity values of around 30%.

This analysis shows that a power law (Eq. (3)) approx-
imates conductivity of an electrode based on disc-shaped
spheroids of an anisotropy parameter (aspect ratio) up to 10
rather well, i.e. within approximately±0.1α-units for prac-
tically relevant porosity values, when Bruggeman exponents
significantly higher than 1.5 are employed.

Model calculations were also performed for prolate el-
lipsoids, i.e. by formally stretching the unit cell shown in
Fig. 1 in the x-direction, resulting in rod-type ellipsoidal
particles aligned in thex-direction, while maintaining the
current in thez-direction. The curves with the open sym-
bols inFig. 6show that the formal Bruggeman exponent for
arrangements of prolate ellipsoids increases with increasing
anisotropy from 1.3 to 1.6–1.7 and depends much less on the

Fig. 6. Bruggeman exponents calculated for dispersions of oblate and pro-
late ellipsoidal particles in a fcc lattice as a function of lattice anisotropy
for various porosity values. Anisotropy of parameter is defined as ratio
of longer to shorter ellipsoid axes and is unity for spherical particles.

anisotropy parameter than for oblate ellipsoids. This result
is also evident from a qualitative point of view, since the cur-
rent lines basically encounter in thez-direction ‘obstacles’
with circular cross-sections in the case of prolate ellipsoids
and ‘obstacles’ with elliptical cross-sections in the case of
oblate ellipsoids, with a corresponding increase in tortuosity
in the latter case.

In summary, α can be considered, in combination
with Eq. (3), as a useful parameter for characterizing the
quasi-continuum of a porous network based on spherical
or ellipsoidal particles. The application of a power law
is more justified than a tortuosity parameter according to
Eq. (4) since simulated MacMullin numbers for electrode
morphologies discussed up to now cannot be reasonably fit-
ted by a 1/ε law. Nevertheless, caution is required to avoid
oversimplification based on the presented simulations. The
morphology of electrodes, especially as a result of coating
and calendering, is certainly much more complex and re-
sults in an anisotropic compaction and partial alignment of
non-spherical particles. Therefore, the conclusions of our
calculations can only provide guidelines.

4.2.3. Rectangular prismatic particles
A set of model configurations was simulated to gain a bet-

ter understanding of electrodes based on platelets or flakes,
e.g. based on graphite (seeFig. 4(A)). In contrast to spheri-
cal and ellipsoidal particles, rectangular prismatic ones can
be packed much tighter, in fact in the case of uniform size
and shape to a theoretically zero void volume fraction. As
for spherical particles, a model geometry has to be assumed,
i.e. one that makes a compromise between random arrange-
ment of particles in a real electrode and minimization of
the size of the unit cell to be simulated. In practice, most
platelet-shaped particles will be in a staggered orientation
with respect to each other, but some may lie on top of each



K.K. Patel et al. / Journal of Power Sources 122 (2003) 144–152 151

Fig. 7. Model geometry for calculating electrolytic conductivity of voids formed between square tile-shaped (or cubic) particles in a tetragonal (or cubic)
lattice. Top: ‘conductivity unit cell’ with current flow inz-direction. Bottom: front and side views with conductivity unit cell (dashed lines).

other, at least when viewed from a particular direction. This
situation is reflected by the simplified unit cell arrange-
ment presented inFig. 7 with sides 1, 1 and 8/R, where the
anisotropy parameterR is unity for cubic particles. In this
model configuration, the tiles are perfectly staggered when
viewed in thex-direction (Fig. 7, bottom left), while 50%
of them face each other over a much larger fraction of their
surface, which is apparent when viewed in they-direction
(Fig. 7, bottom right). As with ellipsoids, the conductivity
was calculated as a function of anisotropy by formally com-
pressing the ‘conductivity unit cell’ shown inFig. 7and the
prismatic particles in thez-direction. With increasing formal
compression, flatter and flatter square tiles are obtained with
a ratioR between the length (x-, y-directions) and the height
(z-direction) of the tiles. Porosity was varied by formally in-
creasing or decreasing the size of the prismatic particles on

Fig. 8. Bruggeman exponents calculated for cubic or rectangular-prismatic
particles, dispersed according toFig. 7, as function of lattice anisotropy
for various porosity values.

their respective lattice positions. As seen inFig. 8, there is a
large difference in formal Bruggeman exponents for differ-
ent porosity values, which shows that a power law (Eq. (3))
is no longer applicable. The results were therefore tested to
determine ifEq. (4)would represent a better description of
electrolytic conductivity in such arrangements. Almost per-
fect straight lines are shown inFig. 9, with slopes,s, which
all intersect atNM ∼= 1 for 1/ε = 1 (i.e. for the bulk elec-
trolyte) and are described by

NM = s

(
1

ε
− 1

)
+ 1 (11)

For anisotropy values ofR ≥ 2.5, the slopes of the lines
approximateR to within better than±10%. Thus,Eq. (11)
can be rewritten as

Fig. 9. MacMullin numbers for cubic and rectangular-prismatic particles,
dispersed according toFig. 7, as a function of porosity for various cases
of anisotropy, varying fromR = 1 to R = 10. Two separator samples are
shown for comparison. Dashed line is calculated fromNM = 9(1/ε−1)+1.
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NM ∼= R

(
1

ε
− 1

)
+ 1, for R ≥ 2.5 (12)

This provides an interesting relationship between the liquid
phase conductivity of a porous body based on its overall
porosity and the shape (anisotropy) of its rectangular pris-
matic particles. It is intriguing to note that two separator
products from the same manufacturer, which vary mainly in
their porosity values, lie very close to a straight line (calcu-
lated forR = 9, seeFig. 9). According to results from this
work, such a finding would be compatible with a lamellar
structure, where the thickness of the lamellae, perpendicu-
lar to the separator surface, is almost 10 times smaller than
the lengths, parallel to the separator surface.

5. Conclusions

For a liquid phase, simulations confirm the experimental
result that a power law (Eq. (3)) is valid for volume frac-
tions from 100% down to about the void volume between
closest-packed spheres. The exponent ofα = 1.3 in the
power law is slightly smaller than that reported experimen-
tally for beds of spherical particles (α = 1.5) [7,8]. Accord-
ing to numerical simulations presented in this work, arrange-
ments of prolate and oblate ellipsoids also follow a power
law, where the Bruggeman exponent increases only slightly
to 1.6–1.7 for prolate ellipsoids. For oblate ellipsoids, the
Bruggeman exponent increases much more with increasing
anisotropy, i.e. the ratio,R, of the main axes. ForR-values of
10, Bruggeman exponents of >3 are obtained, and result in
significantly lowered effective conductivity through a porous
structure which consists of such particles. On the other hand,
porous bodies based on cubic particles or platelets do not
follow a power law (Eq. (3)) at all. It is found that the Mac-
Mullin number increases with increasing anisotropy, i.e. ap-
proximately linearly withR and as a linear function of 1/ε.

This work corroborates that care has to be taken when
liquid phase conductivity of practical battery electrodes is
estimated and that a power law (Eq. (1)) with a Bruggeman
exponent of 1.5 may severely overestimate ionic conductiv-
ity. This investigation shows through relatively simple cal-
culations the clear preference for spherical or slightly pro-
late ellipsoidal particles for battery electrodes when good
high-rate performance is required, since they result in the
highest effective electrolytic conductivity through the porous
network. Such particles have the additional advantage that
the derived electrodes do not pose a risk of being overcon-
solidated. Even for the case of closest packing, there are still
sufficiently wide channels to allow for electrolyte transport.
On the other hand, very flat and thin disk or plate-shaped
particles should be avoided, at least for high-rate applica-
tions, since they drastically reduce electrolytic conductivity.

High formal Bruggeman exponents in the range of typi-
cally 3–4 have been derived for a range of separator samples
examined in this work and from published data[12]. Such

values are an indication of the highly tortuous path inside
standard separator materials. It appears that there is room
for the development of lower resistance separators, e.g. by
developing processes where separator membranes are based
on slightly sintered, polymeric or ceramic particles, prefer-
ably of spherical shape. Such a morphology could reduce
the Bruggeman exponent to around 1.5. Despite a low poros-
ity of ε ∼= 0.26, MacMullin numbers of approximately 7.5
could be achieved, which are lower than for most separator
products that are available commercially (cf.,Table 2). A
further advantage of separator products based on relatively
tightly packed, quasi-spherical particles could be increased
resilience against puncture of the membrane, which thus en-
ables the use of a thinner product and thereby further reduces
cell resistance. Some work on separator materials based on
ceramic particles has been published recently[13].

No effort has been undertaken in this study to model
the morphology of the porous network inside commercially
available separators since the effective resistance of a sep-
arator layer, saturated with electrolyte solution, can easily
be determined experimentally. As pointed out in this work,
analogous measurements with free-standing porous elec-
trode layers would be very useful in order to get quantitative
information on the electrolyte transport within the electrode
pores and to provide better justified morphology parameters
for battery design and optimization.
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